THE EFFECT OF AMELIORANT AND FERTILIZER OF N, P, K IN PEAT SOILS ON CARBON EMISSION, GROWTH AND YIELD OF RICE

by Nelvia Nelvia

Submission date: 05-Jun-2018 02:00PM (UTC+0700)

Submission ID: 972539022

File name: POSTER No. 1.pdf (437.1K)

Word count: 1119 Character count: 4463

THE EFFECT OF AMELIORANT AND FERTILIZER OF N, P, K IN PEAT SOILS ON CARBON EMISSION, GROWTH AND YIELD OF RICE

Nelvia

Agrotechnology Department, Faculty of Agriculture, Universias Riau, Indonesia Email: nelvia@unri.ac.id.

Introduction

The productivi 🛜 f plant on peat soil is very low, this is caused by low fertility and very high concentrations of phenolic acids. Phenolic acid as a result of lignin biodegradation and the sources of C-release, are of aromatic group (Sabiham, 2010). Phenolic acids are more phytotoxic for plants and causes stunted plant growth (Dohong and Sabiham, 2001), influence the biochemical and physiological processes of plants and nutrients uptake by plant (Driessen, 1978). Phenolic acids and C-rele ase could be reduced with the adition of cations such as Al, Fe, Cu, Zn and Mn. Where the stability of complexes between numic acid-metal getting weaker in the order of Al³⁺> Fe³⁺> Cu²⁺> 7n +> Zn ²⁺>> Mg²⁺> Ca²⁺ (Tan, 2003). Dreg is agrondustrial waste contains essential nutrients (macro nutrients such as P, K, Ca, Mg and micro nutrients such as Fe, Cu, Zn, Mn). The research aims to study the effect of dreg as ameliorant and N, P, K fertilizers in peat soils on carbon emissions, growth and yield of rice.

Materials and Methods

Peat soils was taken in the Pelalawan, Riau with the level of decomposition hemic and dreg as ameliorant is agroindustrial waste of Pulp and Paper Industry in Riau (chemical characteristic of peat soil and dreg in Table 1 and 2). Experiment in Form factorial using completely randomized design. The first factor was dreg 9 eliorant (0, 2.5, 5 and 10 tons/ha), the Second factor was N, P, K fertilizers (1.5, 2 and 2.5 x recommended dose = $\frac{200}{100}$ kg N, 100 kg P₂O₅ and 125 kg K₂O/ha), each combination was repeated 3 times. Parameters observed include: carbon emission (CO2 and CH4), number and age out of panicle, pithy grain percentage, weight of dry milled grain and 1000 grain

Table 1. Chemical characteristic and ash content of peat soil (Nelvia, 2014)

Chamical characteristics	Value	Chemical characteristics and ash content	Value
pH H ₂ O (1:5)	3,2	Saturation (%)	6
pH KCl (1:5)	3,0	nutrient (DTPA)	
Organic-C (%)	43,73	Fe (mg/kg)	475
Togal N (%)	0,65	Mn (mg/kg)	1
A ratio	67,28	Cu (mg/kg)	2
Exc.Ca (cm ol (+)/kg)	2,27	Zn (mg/kg)	2
Exc.Mg (cmol (+)/kg)	0,68	None nutrient (HNO, +	
Exc.K (cmol (+)/kg)	0,22	140 ₁)	3606
Exc.Na (cm ol (+)/kg)	0,26	Fe (mg/kg)	12,3
mg/kg) (Bray I)	135,4	Mn (mg/kg)	3,1
mg/kg) (HCl 25%)	320	Cu (mg/kg)	4,8
CEC (cm ol (+)/kg)	72,45	Zn (mg/kg)	15,89
		Ash content (%)	

Table 2. Chemical characteristic and ash moisture of dreg (Nelvia, 2014)

Chemical characterization	value	Chemical characterization	value	
pH H ₂ O (1:5)	9,3	Extrac ParaCitric Acid 2%		
Extra HCIO ₄ + HNO ₃ pa		Macro nutrient		
Macro Cifient		P2O (g/kg)	1,8	
P2Os (g/kg)	2,0	K ₂ O (g/kg)	3,1	
K,O (g/kg)	3,1	CaO (g/kg)	409,7	
CaO (g/kg)	410,3	MgO (g/kg)	23,2	
MgO (g/kg)	23,9	Na (g/kg)	25,9	
Na (g/kg)	26,8	S (g/kg)	6,4	
S (g/kg)	7,2	Micro nutrient		
Micro nutrient		Fe (mg/kg)	3244	
Fe (mg/kg)	5000	Mn (mg/kg)	914	
Mn (mg/k g)	989	Cu (mg/kg)	105	
Cu (mg/kg)	127	Zn (mg/kg)	206	
Zn (mg/kg)	224	moisture (%)	15.89	

Results

Dreg	NPK fertilizers			
tons/ha	1.5 x RD	2 x RD	2.5 x RD	
	CH	production (mg pot	h-1)	
0	69.771 ab	15.552 abc	17.420 abc	
2.5	-7.984 bc	5.7983 abc	22.169 abc	
5	81.141 a	7.822 abc	12.686 abc	
10	27.115 abc	-5.2413 bc	-31.041 €	
	co,	production (mg pot	1 h ³)	
0	811.383 ab	-2.076 ab	148.045 ab	
2.5	-450.509 ab	404.372 ab	-1078.754 at	
5	810.530 ab	-2248.468 Ь	927.613 a	
10	-1824.256 ab	-342.894 ab	498.112 ab	

The numbers in the same columns and rown are not significantly different at 5% DNMRT

Fig. 1. The growth of rice IR-64 at vegetative phase

Table 3. The CO₂ and CH₄production (mg pot¹ h⁻¹)

from peat soils

Table 4. The number of panicle, panicle age out, pithy grain percentage, weight of dry milled grain and weight of 1000 grain

Dreg	NPK tertilizers			
tons/ha	1.5 x RD	2 x RD	2.5 x RD	
	numb	er of panicle (number	rpot ³)	
0	15.33 d	13.33 d	11.00 d	
2.5	24.67 c	26.00 c	27.33 €	
5	29.33 с	36.00 b	36.00 b	
10	39.67 ab	41.00 ab	44.67 a	
		panicle age out (day)		
0	56.33 c	73.00 a	73.67 a	
2.5	60.00 bc	61.67 bc	61.33 bc	
5	59.00 bc	59.67 bc	62.67 b	
10	59.00 bc	59.33 bc	60.67 bc	
	pi	thy grain percentage	(%)	
0	98.00b	95.60ab	96.00ab	
2.5	97.5ab	96.40ab	96.30ab	
5	97.0ab	97.80b	95.50a	
10	96.4ab	97.10ab	96.40ab	
	weigh	nt of dry milled grain (g/pot)	
0	24.56f	22.06f	25.19f	
2.5	57.69e	62.28e	66.09e	
5	82.17d	93.21bc	84.42cd	
10	97.81b	121.43a	122.31a	
		veight of 1000 grain (g)	
0	20.94bc	20.75€	21.14 bc	
2.5	22.32abc	22.91a	22.36abc	
5	21.89abc	22.86a	22.15ab c	
10	21.05bc	22.29abc 8	22.42ab	

The numbers in the same columns and rows which followed the same lowercase letter are not significantly different at 5 % DNMRT.

Table 3 and 4 and figure 1 shows that the addition of dregs ameliorants 2.5 tons har and (300 kg N, 150 kg P₂O₅ and 187.5 kg K2O) ha⁻¹ tend to increase panicle age out, pithy grain percentage, weight of 1000 grain and decrease $production \ of \ CH_4 \ and \ CO_2 \ gas \ and \ increase \ number \ of \ panicle \ and \ weight \ of \ dry \ milled \ grain \ significantly \ compared \ to$ without ameliorant.

Conclusion

The addition of dregs ameliorants 2.5 tons hard and (300 kg N, 150 kg P2O6 and 187.5 kg K2O) hard decreased carbon emission and increased the growth and yield of rice in peat soil significantly compared to without ameliorant.

THE EFFECT OF AMELIORANT AND FERTILIZER OF N, P, K IN PEAT SOILS ON CARBON EMISSION, GROWTH AND YIELD OF RICE

ORIGIN	ALITY REPORT				
SIMILA	4% ARITY INDEX	11% INTERNET SOURCES	12% PUBLICATIONS	6% STUDENT PA	PERS
PRIMAF	RY SOURCES				
1	farrer.agric	c.nsw.gov.au			2%
2	academicion Internet Source	ournals.org			2%
3	caused by	va. "Rapid living Gremmeniella Incentrations o 10/1998	abietina affe	cts foliar	2%
4	columns to	Goonetilleke, And predict long to be predict long to be rigated soils under Journal of Soils	erm behaviou der field con"	r of	2%
5	arbuscular on the grow	"The interactive mycorrhizal for with and nutries ", Development 2007	ungi and rhizonts uptake of	sorghum	2%
6	balittanah. Internet Source	litbang.deptan	.go.id		1%
7	www.fao.o	rg			1%

www.ficciagroindia.com
Internet Source

Exclude quotes

On On Exclude matches

Off

Exclude bibliography